Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

III-V nanowire arrays: growth and light interaction

Identifieur interne : 000107 ( Main/Repository ); précédent : 000106; suivant : 000108

III-V nanowire arrays: growth and light interaction

Auteurs : RBID : Pascal:14-0051919

Descripteurs français

English descriptors

Abstract

Semiconductor nanowire arrays are reproducible and rational platforms for the realization of high performing designs of light emitting diodes and photovoltaic devices. In this paper we present an overview of the growth challenges of III-V nanowire arrays obtained by molecular beam epitaxy and the design of III-V nanowire arrays on silicon for solar cells. While InAs tends to grow in a relatively straightforward manner on patterned (111)Si substrates, GaAs nanowires remain more challenging; success depends on the cleaning steps, annealing procedure, pattern design and mask thickness. Nanowire arrays might also be used for next generation solar cells. We discuss the photonic effects derived from the vertical configuration of nanowires standing on a substrate and how these are beneficial for photovoltaics. Finally, due to the special interaction of light with standing nanowires we also show that the Raman scattering properties of standing nanowires are modified. This result is important for fundamental studies on the structural and functional properties of nanowires.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0051919

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">III-V nanowire arrays: growth and light interaction</title>
<author>
<name sortKey="Heiss, M" uniqKey="Heiss M">M. Heiss</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Russo Averchi, E" uniqKey="Russo Averchi E">E. Russo-Averchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dalmau Mallorqu, A" uniqKey="Dalmau Mallorqu A">A. Dalmau-Mallorqu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="T T Nc O Gbreve Lu, G" uniqKey="T T Nc O Gbreve Lu G">G. T T Nc O Gbreve Lu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matteini, F" uniqKey="Matteini F">F. Matteini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="R Ffer, D" uniqKey="R Ffer D">D. R Ffer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Conesa Boj, S" uniqKey="Conesa Boj S">S. Conesa-Boj</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Demichel, O" uniqKey="Demichel O">O. Demichel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alarcon Llad, E" uniqKey="Alarcon Llad E">E. Alarcon-Llad</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fontcuberta I Morral, A" uniqKey="Fontcuberta I Morral A">A. Fontcuberta I Morral</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0051919</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0051919 INIST</idno>
<idno type="RBID">Pascal:14-0051919</idno>
<idno type="wicri:Area/Main/Corpus">000149</idno>
<idno type="wicri:Area/Main/Repository">000107</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Arrays</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Light emitting diodes</term>
<term>Molecular beam epitaxy</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Optoelectronic devices</term>
<term>Photovoltaic cell</term>
<term>Raman scattering</term>
<term>Reviews</term>
<term>Solar cells</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Synthèse nanomatériau</term>
<term>Réseau(arrangement)</term>
<term>Semiconducteur III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Diode électroluminescente</term>
<term>Dispositif optoélectronique</term>
<term>Dispositif photovoltaïque</term>
<term>Article synthèse</term>
<term>Mécanisme croissance</term>
<term>Epitaxie jet moléculaire</term>
<term>Cellule solaire</term>
<term>Arséniure d'indium</term>
<term>Composé III-V</term>
<term>Recuit</term>
<term>Diffusion Raman</term>
<term>Substrat silicium</term>
<term>Substrat GaAs</term>
<term>Substrat nanofil</term>
<term>8116</term>
<term>8107V</term>
<term>8107B</term>
<term>8560J</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Semiconductor nanowire arrays are reproducible and rational platforms for the realization of high performing designs of light emitting diodes and photovoltaic devices. In this paper we present an overview of the growth challenges of III-V nanowire arrays obtained by molecular beam epitaxy and the design of III-V nanowire arrays on silicon for solar cells. While InAs tends to grow in a relatively straightforward manner on patterned (111)Si substrates, GaAs nanowires remain more challenging; success depends on the cleaning steps, annealing procedure, pattern design and mask thickness. Nanowire arrays might also be used for next generation solar cells. We discuss the photonic effects derived from the vertical configuration of nanowires standing on a substrate and how these are beneficial for photovoltaics. Finally, due to the special interaction of light with standing nanowires we also show that the Raman scattering properties of standing nanowires are modified. This result is important for fundamental studies on the structural and functional properties of nanowires.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>25</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>III-V nanowire arrays: growth and light interaction</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HEISS (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RUSSO-AVERCHI (E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DALMAU-MALLORQUÍ (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TÜTÜNCÜO========Gbreve;LU (G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MATTEINI (F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RÜFFER (D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CONESA-BOJ (S.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>DEMICHEL (O.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ALARCON-LLADÓ (E.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>FONTCUBERTA I MORRAL (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s2>014015.1-014015.9</s2>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000501646570160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>76 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0051919</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Semiconductor nanowire arrays are reproducible and rational platforms for the realization of high performing designs of light emitting diodes and photovoltaic devices. In this paper we present an overview of the growth challenges of III-V nanowire arrays obtained by molecular beam epitaxy and the design of III-V nanowire arrays on silicon for solar cells. While InAs tends to grow in a relatively straightforward manner on patterned (111)Si substrates, GaAs nanowires remain more challenging; success depends on the cleaning steps, annealing procedure, pattern design and mask thickness. Nanowire arrays might also be used for next generation solar cells. We discuss the photonic effects derived from the vertical configuration of nanowires standing on a substrate and how these are beneficial for photovoltaics. Finally, due to the special interaction of light with standing nanowires we also show that the Raman scattering properties of standing nanowires are modified. This result is important for fundamental studies on the structural and functional properties of nanowires.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Article synthèse</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Reviews</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Diffusion Raman</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Raman scattering</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Difusión Ramán</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Substrat silicium</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Substrat nanofil</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8560J</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>062</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000107 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000107 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0051919
   |texte=   III-V nanowire arrays: growth and light interaction
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024